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Driven by the human induced climate change, the significance of extreme
precipitation extremes did not only increase the past year, but rather it will
increase the next years even more [Stott, 2016]. Due to the relevance of rain
not only for humans in their private environment, but also for industrial and
agricultural applications, correct and highly resolved weather forecasts are
significantly important, but at the same time highly complex, non-linear and
resource demanding [Nayak, 2013]. According to that, systems that are able
to increase the precision of rain forecast without exorbitant higher compu-
tational demand are offering a high value for many stakeholders. The ap-
proach presented in this thesis is trying to increase the spatial resolution of
a currently productively used forecast model developed from the Deutscher
Wetterdienst (DWD) by training a neural network based on higher resolved
radar images as target. The concept has been implemented and evaluated, to
finally propose next steps for the DeepRain project.
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Chapter 1

Introduction

Rainfall forecasts are important for many people, not only in their private life.
Whole industries like solar energy or agriculture rely on the predictability of
weather, either to predict outcomes or to make decisions for example regard-
ing crop rotation. Moreover, the predictions are a foundation of water re-
source management and integral for flooding prevention [Nayak, 2013]. But
even though rain forecasting has a significant importance, current forecasts
still lack sufficient precision especially in spatial dimensions. As [Nayak,
2013] mentions, even though rainfall is one of worlds most important tasks,
at the same time it is one the most challenging, because rainfall is non-linear
and highly complex and highly dependent on the elevation profile. This ran-
domness and its missing continuous characteristics is differentiating rainfall
from other parameters like temperature [Nikam and Meshram, 2013].

Due to the importance of weather forecasts, nearly every country estab-
lished institutions that are responsible for the operation of weather stations,
prediction of future weather and alerting in case of extreme weather events.
Example for this country wise organized institutions are the Royal Meteoro-
logical Institute of Belgium [RMI, 2019], the Indian Meteorological Depart-
ment [IITM, 2019], the Hong Kong Observatory [HKO, 2019] or the Deutsche
Wetterdienst (DWD) [DWD, 2019c]. Next to these, bigger organizations like
the National Oceanic and Atmospheric Administration for the US are com-
posed of different organizations like the National Weather Service, the Na-
tional Centers for Environmental Prediction and below that nine service cen-
ter. In Europe the European Centre for Medium-Range Weather Forecasts
(ECMWF) [ECMWF, 2019] is working on top of local institutes like the DWD
as research institute and operational service, providing data for their mem-
bers. But next to the ECMWF there are other cooperations developing local
as well as global forecast model as for example COSMO and ICON [Baldauf,
Klink, and Reinhardt, 2016, Reinert et al., 2019].

This thesis is embedded in a BMBF-Project called DeepRain, coordinated
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by the Jülich Supercomputing Centre (JSC). It is a cooperation of five insti-
tutions (JSC, DWD and Universities of Osnabrück, Bonn and Bremen) join-
ing a wide variation of knowledge [JSC, 2019]. The project focuses on the
improvement of precipitation forecasts in Germany using machine learning.
The thesis should offer first insights in the potentials and challenges of ma-
chine learning in the precipitation context as baseline for the project, focused
on the increasement of spatial resolution for the currently used prediction
models offered by the DWD.

To achieve a higher spatial resolution in the model forecasts itself, many
additional parameters need to be added, resulting in a significant increase of
processing time. To resolve this problem, an approach is to learn the map-
ping from low resolution COSMO-DE(-EPS) data towards high resolution
radar data. For a solid understanding of the used model, the strength and the
limitation of the currently used model in Germany are presented as first part
of the thesis. Next hyper- and super-resolution are introduced as base for
the mentioned mapping and a systematic literature review is done to show
the current state of research in the field of super-resolution for weather pre-
diction. Using this theoretical foundation, a general concept has been de-
veloped, implemented and evaluated to finally conclude the thesis and give
suggestions for next steps in the ongoing project.
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Chapter 2

Theoretical Foundations

2.1 Tasks and Products of the DWD

2.1.1 Introduction

Founded as executive agency of the Federal Ministry of Transport and Digital
Infrastructure, the DWD has nine main tasks, as officially defined in [DWD,
2018].

First, the DWD should offer climatologically and meteorologically ser-
vices for individual customers, as well as for the general public. Examples
of individual customer are trade, industry, water management and environ-
mental protection. Second, it has the duty to provide information for mar-
itime shipping, traffic routes and other critical infrastructure as for example
energy supply. Third, the DWD has to publish warnings about weather phe-
nomena that may be a potential danger for public safety directly or indirectly
by their relation to critical weather or climate events. Fourth, the DWD has
the responsibility to make short- and long-term observations of meteorolog-
ical processes as well as the composition of the atmosphere. Fifth, it has to
detect interactions between the atmosphere and other environmental areas
out of a meteorological perspective. Sixth, the DWD has to create forecasts
of meteorological and climatological processes and has to analyze climate
change and its impact. Seventh, especially in case of emergencies, the DWD
has to track radioactive substances in the atmosphere and predict the future
transport. Eighth, the DWD should operate the necessary infrastructure to
ensure the duties listed beforehand. Ninth, the DWD needs to take care of
availability, archiving, documentation and release of climatological and me-
teorological services and data.

The mentioned duties result in different products of the DWD providing
the required information. Below a selection of these products is presented:
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COSMO-DE:
Model generating forecasts for Germany with a grid point distance of
2.8 km.

COSMO-DE-EPS:
Ensemble of models generating forecasts for Germany with a grid point
distance of 2.8 km.

COSMO-D2:
Extension of COSMO-DE, resulting in a model generating forecasts for
Germany with a grid point distance of 2.4 km.

COSMO-D2-EPS:
Extension of COSMO-DE-EPS, resulting in an ensemble of models gen-
erating forecasts for Germany with a grid point distance of 2.4 km.

ICON:
Model generating forecasts for the whole world with a distance around
13 km between points.

ICON-EPS:
Ensemble of models generating forecasts for the whole world with a
distance around 13 km between points.

RADOLAN:
Composite of radar data in Germany approximating the rainfall close
to the ground with the shortest possible temporal delay without losing
to much data quality.

Due to the focus of this thesis and agreements with project partners like
the DWD, in the following chapter COSMO-DE, COSMO-DE-EPS, ICON and
RADOLAN are presented in more detail. The information about the pre-
sented model is based on different handbooks published by the DWD, that
are mainly [DWD, 2017], [DWD, 2018], [Baldauf, Klink, and Reinhardt, 2016],
[Theis et al., 2017] and [Reinert et al., 2019]. To increase the readability of the
chapter, an individual citation of each sentence has been omitted.

2.1.2 Radar data

The first product presented is RADOLAN (Radar-Online-Aneichung), a radar
based system. It is used to get insights into the current and past status of rain-
fall in Germany [DWD, 2017]. Under development since 1997 and live sice
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FIGURE 2.1: Comparison of ombrometer data (left) and radar
data (right), based on [DWD, 2018].

2005, RADOLAN is a composit of 17 c-band radar stations. It has been de-
veloped to get close to live information about rainfall and floods in case of
extreme weather events [DWD, 2018]. Relevant for this is mainly the amount
of rain or alike phenomena (e.g. snow) close to the ground. But radar is only
able measure reflections of rain in the atmosphere around the available radar
stations. Based on that even in a composed manner the computed values are
quite different from the ones measured by ombrometers on the ground, as
one can see in figure 2.1. On the left side the rainfall measured by ombrome-
ters is shown and on the right side using uncorrected radar data is presented.

Regarding to that it is either possible to use the obrometer data directly
(and accept a quite high temporal delay) or the radar data needs to be im-
proved to get data with an acceptable quality and small temporal delay. Due
to the focus of RADOLAN presenting near to live data in case of floods or
comparable scenarios it is important to keep the temporal delay as small as
possible. Because of that the DWD uses ombrometer data to adjust the radar
data and get improved quality while keeping a quite small delay. Example
results can be found in the appendix under A.1 for an extract and under A.2
for whole Germany.

To get results like this, 17 c-band radar stations with a radius of 150 km are
are used as well as more than 1200 ombrometer stations. One major differ-
ence between these data sources it the temporal delay between measurement
and provision of data. Radar data is updated every five minutes, and om-
brometer stations are delivering their results hourly. The combination of this
values can be done in different ways, but independent of the aggregation al-
gorithm it is not trivial to achieve high dataquality. To get reasonable data,
only values with a maximal distance of 100 km to the next radar station and
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FIGURE 2.2: Network of radar stations (left) and ombrometer
stations (right) in Germany, based on [DWD, 2018].

areas with at least 40 to 60 obrometers in the respective 100 km radius should
be used. This prerequisites are only fulfilled completely in Bayern, Baden-
würthenberg, Rheinland Pfalz and Sachsenanhalt as examinable in figure 2.2.

The expansion of this network as well as the integration of radar stations
outside of Germany in RADOLAN is under development. Currently, the
product with the shortest possible temporal delay without losing to much
data quality is the hourly RW-product accessible for example on a ftp-server
of the DWD 1. The data is saved in binary or ASCII (short for American
Standard Code for Information Interchange) format with 900 times 900 data
points (810000 in total) using two byte per data point with the little endian
convention. More about the extraction of this data can be found in chapter 4.

2.1.3 Prediction model

2.1.3.1 Overview

Next to RADOLAN as radar based product, several prediction models have
been developed from the DWD over the years. The more recent ones are
distinguished in local models, mainly developed for Germany, and global
models, offering predictions for the whole world.

1 f tp : // f tp− cdc.dwd.de/pub/CDC/gridsgermany/hourly/radolan/
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COSMO-DE COSMO-D2

Germany-wide

COSMO-DE-EPS COSMO-D2-EPS

COMSO-EU ICON

World-wide

COSMO-EU-EPS ICON-EPS

FIGURE 2.3: Development of COSMO model.

The currently relevant local models of the DWD have been developed un-
der the head of COSMO, the consortium for small scale modeling [Baldauf,
Klink, and Reinhardt, 2016]. COSMO was formed in 1998 by the DWD, the
Geoinformationsdienst der Bundeswehr, the Weather center of Italy, Greek,
Poland, Romania, Russia and Switzerland. It has been extended by Israel
in 2016 and has the order to improve the formerly independent developed
model of each country.

Profiting from this cooperation, the DWD developed COSMO-DE as base
and COSMO-DE-EPS as probabilistic ensemble model. As shown in fig-
ure 2.3 COSMO-DE has been extended to COSMO-D2 and its probabilistic
extension COSMO-D2-EPS. Apart from this local model, global model like
COSMO-EU have been developed to offer predictions for the whole world.
But similar to COSMO-DE, major improvements lead to two new models
called ICON, and ICON-EPS, the first one as base model and the second one
as probabilistic ensemble model setting up upon ICON.

In the next steps COSMO-DE, COSMO-DE-EPS as local model will be
explained in more detail, as well as ICON and ICON-EPS as global model.
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2.1.3.2 COSMO-DE

The two probably most important prediction model for this thesis are COSMO-
DE and COSMO-DE-EPS. As already mentioned COSMO-DE is the foun-
dation of the COSMO-DE-EPS model offering predictions for Germany, the
Alps (Austria and Switzerland) and parts of the neighbouring countries [Bal-
dauf, Klink, and Reinhardt, 2016]. The model gets started eight times per day
predicting values up to 27 hours into the future. It needs around one hour
for the prediction run on the mainframe of the DWD, as shown in table 2.1.

TABLE 2.1: Start and end points of prediction runs.

Starting time (UTC) Completion time (UTC)

00:00 01:00
03:00 04:00
06:00 07:00
09:00 10:00
12:00 13:00
15:00 16:00
18:00 19:00
21:00 22:00

COSMO-DE is using a model consisting of unfiltered euler equations of
hydro-thermodynamical base equations, which are solved using spatial dis-
cretization and temporal integration. To model dynamics of the world’s at-
mosphere and the resulting weather, several physical parameter have to be
taken into account. Important are for example radiation, different types of
precipitation, moisture convection, partial clouds, vertical turbulent streams
and soil processes. To show the complexity of the processes that is required
to get reliable results, the differentiation of precipitation is shown with the re-
sulting processes. First, it is important to differentiate between water vapor,
cloud ice, cloud water, rain, snow and graupel. To model a dynamical system
upon this, many transitions between them need to be included. This results
in a quite significant complexity of 108 - 109 differential equations that need
to get solved using time integration [DWD, 2019b]. A graphical overview of
the mentioned transitions is presented in the appendix at A.3.

Given a model definition, the initial settings of parameter and border han-
dling are the next steps. In COSMO-DE the initial setting is defined using
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analyses of a driving model like ICON (further described in the next chap-
ter). Despite the quality of this model, the initial state is not sufficiently de-
fined. This may result in a spin-up2 after tree to six hours lead time. Different
techniques haven been investigated and some of them are still used to im-
prove the results. One technique is called nudging, including current values
as for example radar data to increase predictions. Additionally, it is impor-
tant to add informations that are not modeled due to the spatial focus. To
include relevant information from outside of Germany that are influencing
the model, interpolated data from the ICON-model is used.

Predictions of COSMO-DE are organized in a grid-like structure with 2.8
km precision of the grid elements horizontally and 50 different layers verti-
cally. The grid is further described by an underlying coordinate system. Each
data-point’s position in the grid has rotated (λ, ϕ)-coordinates in horizontal
direction. They are based on geographic (λg, ϕg)-coordinates with a shifted
north pole. This kind of shift is resulting in a north pole located in the pacific
(40.0N/170.0W). But even though for further use of these grids transforma-
tions back into polar coordinates are required, it is offering higher flexibility
and increased computational efficiency. Using the mentioned precision of 2.8
km, the grid has a size of 421 x 461 fields, resulting in 194081 grid points in
total. To save this grid in a standardized data format Gridded Binary (short
GRIB) is used. GRIB itself is described in the implementation chapter.

2.1.3.3 COSMO-DE-EPS

COSMO-DE-EPS is an ensemble prediction system which has been initiated
2007, fully based on COSMO-DE and ICON [Theis et al., 2017]. It is a prob-
abilistic model combining multiple instances of COSMO-DE with different
starting conditions to improve the predictions of the model without chang-
ing the dynamical system itself. The resulting grid is unified with COSMO-
DE, similar to the operation times, starting predictions eight times per day as
shown in figure 2.1. To achieve an improvement, 20 ensemble member are
generated with different properties. Important properties to vary are border
conditions, starting conditions, model physics, soil moisture and sea surface
temperature.

Border conditions of COSMO-DE-EPS are computed using ICON-EPS data.
As mentioned before, ICON-EPS is the ensemble model based on ICON (cf.
section 2.1.3.4). But even though ICON-EPS has a finer resolution in Europe

2Adjustment of flows to the highly resolved topography
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than in the rest of the world (20 km vs. 40 km), it is still necessary to inter-
polate the values used for the borders of COSMO-DE-EPS. To compute these
values, ensemble data assimilation is used. 40 different ICON-EPS model are
calculated from which 1 - 20 member are selected as base for interpolation.

But not only border condition need to get varied, also for starting con-
ditions of the model differentiation is required. Even though the starting
conditions should only represent the current situation of the environment,
due to measurement errors the deviation to reality is already to big. To elim-
inate or at least minimize this error Km-scale Ensemble Data Assimilation
(KENDA) [Schraff et al., 2016] is used. KENDA uses Local Ensemble Trans-
form Kalman Filter (LETKF) to estimate the actual state of the atmosphere as
well as the analysis error (random, not systematic) based on current observa-
tions and a-priori information. Using this, it is possible to align analysis en-
semble mean and the most probable current state as well as ensemble spread
and estimated analysis error. Parameter that need to be modeled and can be
varied are 3D-windcomponents, temperature, specific humidity, cloud wa-
ter, cloud ice and pressure on lower model areas. All other variables are set
to their one hour predictions. To improve this method even further, KENDA
is used in combination with latent heat nudging [Stephan, Klink, and Schraff,
2008].

Similar to this, disturbances in soil moisture and sea surface tempera-
ture are added. This is necessary, because uncertainties of heat flowing from
earths surface into the atmosphere need to be taken into account.

Additionally, model physics need to be taken into account. Twelve pa-
rameters are varied randomly, securing that in at least 50% of the member
standard values without disruptions are used. In comparison to the men-
tioned nudging, this parameters are constant during one prediction run. A
graphical overview about these starting conditions is presented in the ap-
pendix at A.4.

Based on these variations, it is possible to generate different ensemble
member. In case of COSMO-DE-EPS the assignment of starting conditions
to member is not as static as in older ensembles. Rather the nth ICON-EPS
model and the nth member of KENDA are used for starting conditions of
the nth COSMO-DE-EPS model in combination with randomized physical
disruptions.

As already mentioned the output of COSMO-DE-EPS is using the COSMO-
DE grid. Additional to the values of each member, the product is offering
ensemble mean, ensemble spread defined for example using standard deviation
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Computation of starting 
conditions (KENDA)

Interpolation of ICON-
EPS border data

Computation of member 
predictions

Calculation of ensemble 
products

FIGURE 2.4: Steps required for operational use of COSMO-DE-
EPS, based on [Theis et al., 2017].

or the distance between 25% and 75% quantiles, maximum and minimum of all
member, quantiles and probabilities, offering for example information about the
exceedance of a threshold regarding precipitation.

These values are computed separately for each grid-point, but it is also
possible to generate these values for less fine grained spatial or temporal
resolutions. To achieve this the values of more hours are simply joined or the
width of grid elements is increased to for example 28 km.

Summed up for the operational usage of COSMO-DE-EPS, four main
steps have to be executed, as graphically presented in the appendix at A.4.
First, the computation of initial settings using KENDA. Second, the interpre-
tation of ICON-EPS data for border interpolation. Third, the member itself
need to be computed. And last, ensemble products like ensemble mean are
determined.

2.1.3.4 ICON and ICON-EPS

In comparison to COSMO-DE and COSMO-DE-EPS, ICON and its ensemble
model ICON-EPS are global model [Reinert et al., 2019]. Developed jointly
by DWD and Max Planck Institute for Meteorology (MPI-M) in Hamburg,
ICON is operational since 2015. The model is used from the MPI-M as core
for their climate modeling system, from the DWD for short/ medium range
global forecasting and wave modeling and from the German armed forces as
relocatable local model.

The prediction process itself is similar to COSMO-DE. Due to its proper-
ties as numerical weather model, one of the major topics is the initial value
problem. It is highly dependent on estimations of the current atmosphere
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FIGURE 2.5: Icosahedron and its projection onto a sphere, based
on [Reinert et al., 2019].

FIGURE 2.6: Used seperation steps in ICON (left: bisection,
right: section devision), based on [Reinert et al., 2019].

state. In general, the estimation is done by combining all available observa-
tions with a first guess (initial prediction step) of a short-range model fore-
cast. Due to its complexity, combining these parts is not trivial and there-
for done using an ensemble variational data assimilation system. This sys-
tem is called EnVar and is offering initial values for the deterministic ICON-
model. EnVar is implementing a variational data assimilation system based
on LETKF for ensemble model as mentioned in section 2.1.3.3.

Even though this part on ICON has its similarities to COSMO-DE, the
output format of ICON is completely different. Starting with the need of an
efficient way to represent points on the whole globe. The horizontal part
of the used grid is based on a projected icosahedron. It generates spherical
triangles spanning the entire sphere, as shown in figure 2.5.

The resulting representation gets improved by two main steps. First, the
initial 20 triangles are divided into n sections each, as presented on the right
side of figure 2.6. In the second step, a bisection is applied k times on all
resulting triangles (left side of figure 2.6).

This can be done for a variation of n and k values, resulting in different
grids as for example the left and the middle one in figure 2.7. In comparison
to this, the traditional lat-/lon-grid as used for COSMO-DE is plotted.
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FIGURE 2.7: Different grid types (left R2B00, middle R2B02 and
right traditional lat-/lon-grid), based on [Reinert et al., 2019].

This kind of icosahedron based generation is mainly responsible for the
naming of different grid solutions. They are named based on the number of
applied sections (n) and bisections (k), resulting in the following naming:

RnBk

If for example in the first step 2 sections are used and 0 bisections are
applied, the resulting name is

R2B00

and the generated grid is the left one in figure 2.7.
Equally to COSMO-DE, a dynamical system representing the weather of

the world realistically can hardly be 2-Dimensional. Regarding that, the ver-
tical dimension of the grid is added, by simply using multiple horizontal
grids stacked above each other. This process generates a set of vertical lay-
ers with height based vertical coordinates. To improve simulations, the layer
are not spaced equally. Rather, they are defined using smooth level vertical
coordinates (also called SLEVE) [Leuenberger et al., 2010], as visualized in
the appendix at A.5. This kind of structure is avoiding flat top layer but is
also offering a higher resolution in the lower layer given a fixed number of
90 layers.

In the beginning of ICON the mentioned grid was used for all required
global predictions. But due to increasing demand of more fine-grained res-
olutions in Europe, the model has been extended. A nest with higher hori-
zontal resolution has been added for Europe by bisecting the triangles lying
above Europe one additional time, presented in the appendix at A.6.

But due to these additional grid points the computation time needed to
calculate this model increased rapidly. To allow a similar operational use
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as done for COSMO (eight runs per day) the vertical resolution had to be
decreased above Europe. Instead of just removing every x layer, the density
of layers has been kept constant in the lower atmosphere, but all layers above
the lower stratosphere have been removed. In comparison, the global model
defines layers up into the mesosphere.

As already mentioned, it is also possible to combine different runs of the
deterministic ICON model to create an ensemble model called ICON-EPS.
The model is defining 40 members with 40 km resolution globally and 20
km above Europe. The model is used for boundaries of COSMO-DE-EPS
and due to that it needs a similar time schedule with at least eight runs per
day. But in comparison to COSMO-DE-EPS, ICON-EPS is partially offering
predictions up to 180 hours into the future. The time schedule is defined as
presented in 2.2, broken down into Europe specific and global predictions:

TABLE 2.2: Maximal forecast times for each model run (lead-
time in hours).

Starting time
(UTC)

Maximal forecast time
refinement Europe

Maximal forecast time
world wide

00:00 30 180
03:00 30 30
06:00 180 180
09:00 30 30
12:00 30 180
15:00 30 30
18:00 180 180
21:00 30 30

Similar to COSMO-DE-EPS, one important aspect is the definition of the
different initial members. Because the general procedure is similar to the one
presented in the chapter before (except the border problem) it will not be
described in more detail. If one is interested in a more detailed discussion
of initial perturbations, implementations and evaluations [Hunt, Kostelich,
and Szunyogh, 2007], [Schraff et al., 2016] and [Freitag and Potthast, 2013]
are good starting points.

2.1.3.5 Strengths and Limits of prediction model

The presented models and their improved versions offer predictions that are
hardly reachable by other model for Germany. Due to that many companies
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in aviation industry or maritime sector are using the DWD model as foun-
dation of their process [DWD, 2019a]. But nevertheless there are some short-
comings and problems limiting further improvements. As mentioned, with
108 - 109 differential equations just for COSMO-DE the models are highly
complex itself and include a lot of observed and simulated information. But
due to the resulting complexity much computation power is required to in-
crease the local precision of the model even a little bit. Because of that it
may be interesting to look into other ways to increase spatial resolution than
including more variables into the existing model. One promising concept
may be hyper-resolution, already used to increase the resolution of natural
images, as presented in the following chapter.

2.2 Hyper-resolution

2.2.1 General concept and classical approaches

Even though it is quite straightforward that the term hyper-resolution is cor-
related with high resolutions in some way, its use in the weather domain
is ambiguous. On the one hand it is used to describe highly resolved in-
put variables for traditional prediction models (e.g. orography) [Beven et al.,
2015, Singh et al., 2015], but on the other hand it can be interpreted as the
exaggeration of super-resolution as a process of resolution increasing on im-
ages or grid oriented data [Yang, Ma, and Yang, 2014, Timofte, De Smet, and
Van Gool, 2015]. In the following, the term super-resolution is used for the
latter. In the super-resolution process a high resolution (HR) image is gener-
ated only using low resolution (LR) versions of itself. The problem is trying
to fill the information gap between the existing LR image and the required
HR image in a meaningful way. From a more mathematical perspective it is
a one-to-many mapping from LR space to HR space [Shi et al., 2016]. Due
to this, the problem is underdetermined inverse [Dong et al., 2016] and not
trivially solvable [Shi et al., 2016]. The key aspect that makes this process of
information generation to some extent possible for natural images is the as-
sumption of redundancy in the specific image (local spatial correlation) or in
between different images [Shi et al., 2016]. For other grid oriented data this is
not proven. But for a successful super-resolution process either redundancy
or some kind of additional input is required because information cannot be
generated out of nowhere [Shi et al., 2016].
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Super-resolution is an important and already well-established research-
field in the case of natural images and is used in several areas as for example
medical, satellite imaging or face recognition [Peled and Yeshurun, 2001, Shi
et al., 2013, Thornton, Atkinson, and Holland, 2006, Gunturk et al., 2003]. To
move from low resolution images to high resolution images different initial
settings are possible. If the number of LR-images available is greater than
one, the combination of these images can offer information that can be used
to generate one image with an increased resolution [Farsiu et al., 2004]. The
tackled problem differs if only one image is available, resulting in diverging
applicable techniques. Due to the similarity to the use-case of this thesis,
the important part is single image super resolution, also called SISR [Kim,
Lee, and Lee, 2015a]. But even for SISR the variety of usable techniques is
manifold.

Techniques used for natural images are divided into several categories de-
pendent on the current focus and age of the paper [e.g. Dong et al., 2016, Shi
et al., 2016, Daniel Glasner, 1993, Yang, Ma, and Yang, 2014]. In the follow-
ing it will be exemplary divided into patch-based, edge based, image statistic
based and prediction based. Patch based techniques are trying to find exam-
ples of the image that are repeated with different resolutions and replace the
LR-parts with the HR-parts [Daniel Glasner, 1993]. This can be done in the
image itself, using the additional assumption of mathematical self-similarity
(e.g. in images of specific plants or animals) [Huang, Singh, and Ahuja, 2015]
or using patch dictionaries containing LR-, HR-image pairs. In this case the
algorithm is trying to find patches in the images that are saved in the dic-
tionary in low resolution and exchange them with a corresponding HR-parts
saved in the dictionary [Wang et al., 2012]. Edge based approaches are try-
ing to learn priors from edges to especially generate sharp edges in the SR
process [Sun, Xu, and Shum, 2011, Freedman and Fattal, 2011]. Even though
this might work quite well for edges itself it has shortcomings in SR of other
image parts as for example texture. Image statistic based methods are us-
ing statistical methods to improve specific properties of an image. Examples
for this are the sparsity properties of large gradients or the exploitation of
heavy tailed gradient distributions [Shan et al., 2008, Kim and Kwon, 2010].
In comparison to these explicitly defined concepts, non-classical prediction
based approaches are trying to increase the resolution without manual en-
gineering. In most cases the LR-HR-image pairs are used to train machine
learning algorithms like neural networks or random forests to be able to pre-
dict HR images given only its LR-counterpart. One important aspect that
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many of these SR techniques have in common is that only one channel is
used for the process [Dong et al., 2016]. In this case mostly gray scale images
are used or more color channels are given, the images are transferred into
another color space (like for example YUV) and only the luminance channel
is used for SR. For more information on classical SR methods [Yang, Ma, and
Yang, 2014] provides a detailed evaluation of methods prior to the increasing
usage of neural networks. In the following, neural network based methods
will be presented in more detail.

2.2.2 ANN based super-resolution

In the recent past, more and more neural networks have been applied to solve
the problem of super-resolution (SR) for natural images in an easy and suc-
cessful way [Dong, Loy, and Tang, 2016, Dong et al., 2014, Kim, Lee, and Lee,
2015a]. Early models have been quite small [Shi et al., 2016] but the number
of layers has been increasing over the years [Dong et al., 2016] as well as the
usage of other promising methods like recursive [Kim, Lee, and Lee, 2015b]
or residual connections [He et al., 2016]. One of the initial convolutional neu-
ral networks used for super-resolution has been developed by [Dong et al.,
2016]. Before neural networks have been common, three main steps were
applied for patch-based SR. These steps are patch extraction and representa-
tion, non-linear mapping and reconstruction. In the first step, overlapping
patches are extracted from a LR image and added into a feature map con-
sisting of one high dimensional vector for each patch. In the second step,
these vectors are mapped in a non-linear way onto other vectors still repre-
senting one patch each. Using this high dimensional feature map, in the last
step these vectors are aggregated into a final HR image. [Dong et al., 2016]
reformulated these steps creating an initial three layer deep neural network
as presented in figure 2.8.

In figure 2.8 every step is interpreted as one convolutional layer. First,
an n-dimensional feature map is created. Second, all vectors are mapped in a
non-linear way. Third, the feature map is aggregated using 1x1 convolutions.
Based on this, a first successful super resolution convolutional neural net-
work, short SRCNN, was developed. The only preprocessing step required
for this network is a bicubic interpolation to increase the size of the LR image
to the size of the HR image that should be generated. Next to this first ver-
sion, [Dong et al., 2016] already presented suggestions for improvement, like
adding layers for the non-linear mapping step. In the following more and
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FIGURE 2.8: Procedure of super resolution as base for neural
networks [Dong et al., 2016].

more ideas have been implemented to improve SR. There are two main as-
pects that offer a high potential of improvement. One discussed point is the
moment and method of resolution increase during the process. To achieve
SR, at some point the LR image needs to match the size of the HR image.
[Dong et al., 2016] are increasing the resolution as in initial step using bicu-
bic interpolation. But as [Shi et al., 2016] mention, interpolation methods
are not adding information and therefor are not helpful for the SR process.
Instead, [Osendorfer, Soyer, and Smagt, 2014] are gradually increasing the
resolution during the process. This gradual increase can be done in several
ways. One possibility is to use pooling layers. But even though pooling lay-
ers do not need additional parameters that need to be covered by additional
data, [Johnson, Alahi, and Fei-Fei, 2016] state that it may be a significant im-
provement to use convolutional layers with a stride of 1

2 instead. As already
mentioned, the second important aspect is the amount of data required for
the training process. [Kim, Lee, and Lee, 2015b] tackle this problem by ap-
plying recurrent layer instead of simply stacking convolutional layer. Using
this it is possible to increase the filter size indirectly and at the same time
keep the number of required parameters low. Next to this, most techniques
from neural network based image classification involving convolution can
improve the quality of SR, as for example the use of residual connections [He
et al., 2016].

Next to the defined architecture, [Johnson, Alahi, and Fei-Fei, 2016] fig-
ured out the high influence of loss functions to achieve satisfying SR. The
problem in SR for natural images is that the perceived quality of the resulting
images is not necessarily congruent with a low per-pixel difference. But mea-
suring the perceived quality of an image mathematically usable as loss for a
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neural network is not trivial. Because of that, a variety of different measure-
ments are used to quantify the quality of a generated image. The probably
most common ones are measurements based on per-pixel differences like l1-
or l2-norm, also called mean absolute error (MAE) and mean squared error
(MSE) [Zhao et al., 2016] as defined in equations 2.1 and 2.2.

MAE( f , g) =
1

MN

M

∑
i=1

N

∑
j=1
| fij − gij| (2.1)

MSE( f , g) =
1

MN

M

∑
i=1

N

∑
j=1

( fij − gij)
2 (2.2)

Using this simple per-pixel measurements one of the most known mea-
surements for image generation has been developed, the so called peak-
signal-to-noise ratio or in short PSNR [Horé and Ziou, 2010]. PSNR is defined
based on the Mean Squared Error in the following way:

PSNR( f , g) = 10 log10(
2552

MSE( f , g)
) (2.3)

Due to the possible number of values each color channel can chose in
case of natural images (in RGB), PSNR is defined with 255 in front of MSE.
Next to per-pixel measurements like PSNR, the structural similarity index
(SSIM)[Wang et al., 2004] and its extension the multi-scale structural simi-
larity index (MS-SSIM) [Wang et al., 2003] are two of the most established
indexes. They are differentiable, which allows their use in backpropagation
based algorithms like neural networks [Zhao et al., 2016]. SSIM has been
explicitly designed to approximate human based visual perception by com-
bining luminance distortion, loss of correlation, and contrast distortion, as
shown in equation 2.4.

SSIM( f , g) = l( f , g)c( f , g)s( f , g) (2.4)

with 

l( f , g) =
2µ f µg+C1

µ2
f +µ2

g+C1

c( f , g) =
2σf σg+C2

σ2
f +σ2

g+C2

s( f , g) =
σf g+C3

σf σg+C3
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FIGURE 2.9: General procedure systematic literature review.

In this equation µ f and µg are representing the mean luminances of the
compared images and the contrast is defined by the standard deviations σf ,
σg and the covariance σf g. The additional constants C1, C2, C3 are used to
keep the denominator unequal to zero. MS-SSIM is extending SSIM in a mul-
tiscale manner by combining SSIMs on different scales [Horé and Ziou, 2010].
But even though this measurements are quite established, it is promising to
define the loss of image transformation processes in a less direct way. One
idea to achieve this are Generative Adversarial Networks (GANs) as pre-
sented by [Ledig et al., 2017]. [Johnson, Alahi, and Fei-Fei, 2016] are trying
to establish a similar idea. They are using the insight that for image classifi-
cation pretrained neural networks already learned an encoding of semantic
and perceptual information. By fixing the network it can be used as loss func-
tion. This works quite well for natural images, because classification in this
area is a highly established field with a lot of work done.

2.2.3 Existing approaches of Hyper-resolution in weather fore-

casting

A lot of work has been done in super-resolution of natural images, due to that
it is comparably easy to find entry points for an effective literature search. In
contrast to that, it is much harder to find all the work done in a specialized
area like "super-resolution for weather data" and to ensure, that there are
no published approaches implementing the concept presented in this thesis.
Due to this, more formalized ways of literature reviews have been developed,
up to the grade that the professional realization of review can be scientific
problem itself [Fettke, 2006]. Based on [Webster and Watson, 2010] [Fettke,
2006] presented methodological guidelines to ensure the scientific level of
reviews. The general procedure used in this paper is presented in figure 2.9.

The first step in this process is the definition of a search term. Impor-
tant for the search term is the conjunction of "hyper-resolution" as observed
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method and the target domain "weather". Due to the already mentioned am-
biguous use of the term hyper-resolution and the existence of similar meth-
ods, possible other terms describing these methods are included as well, re-
sulting in the following search term:
"(hyperresolution OR hyper-resolution OR superresolution OR super-resolution OR
upsampling OR upsampling OR upscaling) AND weather"
This search term has been applied in seven databases. Initially the full text
searches have been applied. In that case unfortunately many only marginal
connected papers have been found. The resulting number of papers for each
database are listed in the second column (Hits without restriction) of table
2.3. To reduce this overhead, the search has been restricted to specific parts
of the paper in the second step. The considered fields for each database and
the resulting lowered hits are presented in columns three (Considered fields
after restriction) and four (Hits with restriction). Additional to the field re-
strictions in the search, the documents have been limited to articles, to secure
the scientific topicality.

TABLE 2.3: Systematic literature review: Number of hits sepa-
rated for each data base.

Database
Hits without

restriction
Considered fields
after restriction

Hits with
restriction

ScienceDirect 14,222 title, abstract
and Keywords 69

EBSCOhost 17 title, abstract
and Keywords 1

SpringerLink 1,658 title 767
Emerald 404 title 0
Wiley Online Library 7,139 title and keywords 1
Web of Science 365 topic 234
Google scholar 18400 title 10

This restricted number of papers is the foundation for the following in
figure 2.10 presented procedure. For this procedure 1082 paper are consid-
ered. In the first selection phase duplicates have been removed and the paper
have been selected based on their title, resulting in 52 paper. In the second
selection phase this 52 paper have been reduced based on their abstracts. The
remaining ten paper are shortly presented below, especially highlighting the
differences towards the approach presented in this thesis.
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FIGURE 2.10: Specific systematic literature review including
number of remaining paper.

[Ahrens and Beck, 2008] evaluated classical upscaling methods like re-
gression or smoothing for an area in Austria and presented their limitations.
Model data has been used as base for upscaling methods and rain gauge data
as evaluation data. Therefore, the used data is quite similar to the approach in
this paper, but the aim of the paper is as different as the used techniques. [Ha,
Gowda, and Howell, 2013] presented statistical scaling methods to increase
the spatial resolution of evapotranspiration maps to improve irrigation man-
agement. Even though the topic is quite similar, neither rain prediction nor
neural networks are used. [Berrocal, Gelfand, and Holland, 2010] developed
a mapping from model predictions using grid data onto point measures of
monitoring networks including downscaling. To allow this kind of mapping
correlated spatial Gaussian processes have been used. Even though this may
not be neural network based, it is an interesting way of mapping from grid
to point data that may be a way of overcoming the limits of aggregated radar
data as presented in chapter 2.1.2. [Zhang, Wu, and Yang, 2014] took a closer
look towards the super-resolution of radar data, one of the relevant technolo-
gies in this thesis. But in comparison to this thesis, the radar data has been
used in its initial format and the super-resolution process is defined as equa-
tion solving problem. [Mahour et al., 2015] presented an approach of super-
resolution for evapotranspiration. Again the general topic is quite similar but
the used techniques and the input data differ a lot. [Im et al., 2016] in com-
parison used machine learning algorithms (random forest, boosted regres-
sion tree and Cubist) to learn super-resolution but in this case the used data
differs due to the focus on soil moisture. [Li et al., 2012] focused on the hori-
zontal resolution increase of reflectivity data to reduce the error of rainfall re-
trieval using mainly truncated singular value decomposition. Similar to this,
[Zhang et al., 2019] tried to increase the resolution of radar data using non-
local self-similarity in sparse representations to analyze small-scale weather
phenomena. [Ebtehaj, Foufoula-Georgiou, and Lerman, 2012] shifted their
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focus towards image enhancement for remotely sensed precipitation images.
They used non-linear estimators to find small details out of a more military
oriented perspective. [Ben Bouallègue and Theis, 2014] presented upscaling
methods that are actually using the COSMO-DE-EPS model as input. But in
contrast to this thesis, no mapping towards radar data has been done, fur-
thermore classical smoothing and upsampling is used including additional
neighborhood information.
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Chapter 3

Applied approach

Even though COSMO-DE(-EPS) and RADOLAN data itself might contain
a lot of information, the main purpose of this thesis is to join these two
data sources to reveal additional information useful for rainfall prediction.
The drawbacks of adding new variables to model like COSMO-DE(-EPS)
to increase the resolution should be overcome by combining existing model
with super-resolution methods used for natural images. Inspired by super-
resolution for natural images, an algorithm should be developed that is able
to map from a low resolution to a high resolution grid. Defined by the Deep-
Rain project and confirmed in their effectiveness by literature of natural im-
age super-resolution, neural networks are used to learn this mapping from
low resolution model data (COSMO-DE, 2.8 km precision) to high resolution
target data (RADOLAN data, 1 km precision - redefined to 1.4 km precision).

Upscaling using 
bicubic interpolation

Artificial neural network

Artificial neural network

High resolution grid 
(1.4 km precision)

Low resolution grid 
(2.8 km precision)

FIGURE 3.1: Upscaling process: General procedure.

In figure 3.1 one can see the two main procedures. They differ only in the
upscaling part. The upper version is upscaling the grid in the data genera-
tion process using bicubic interpolation. In this case the network joins the
different feature maps and increases the quality of the resulting grid. In the
lower version, the upscaling process needs to be done by the network itself,
offering a higher variability in moment and procedure of upscaling. More
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details about the implementation and the chosen network architectures are
presented in the following chapters 4 and 5.
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Chapter 4

Implementation

4.1 Procedure and general architecture

The project is mainly implemented in Python [Van Rossum and Drake Jr,
1995] and uses TensorFlow [Abadi, Martın et al., 2015] as deep-learning frame-
work. To make sure, that the training process is monitored correctly, Sacred
[Greff et al., 2017] is used in combination with Omniboard1. For the data
generation as well as for the conduction of the experiments the grid system
from the Institute of Cognitive Science2 is used. The project is divided into
two main parts, the data generation and the training process of the neural
network itself. It has been tried to enclose as much of the process as possible
in the data generation step to decrease the total computation time. Due to
the single execution of the data generation process for each dataset and the
repeated execution of the training process for each model, a shift of as much
process-parts as possible towards the data generation seems to be reasonable.

In the next chapter the data generation process is shown in more detail
and afterwards the training process will be presented.

4.2 Data

4.2.1 General structure

As presented in chapter 3, the project is trying to learn a mapping between
DWD model data (COSMO-DE-EPS) and radar data to increase the spatial
resolution of rain forecasts. To train machine learning algorithms, example
data is necessary. In this chapter the generation of this dataset is presented. In
the process information from files with two different data types are extracted

1 https://github.com/vivekratnavel/omniboard
2 www.ikw.uni-osnabrueck.de
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out of their file structure, prepared for the needs of the project and joined in
one dataset. This process is presented in figure 4.1.

Convert GRIB2-file into 
numpy array

Extract Harz
Interpolate to get initial 

in between points

Convert binary/ASCII-file 
into numpy array

Extract Harz
Interpolate to match 

model data

Combine as base and 
target arrays

Model data (COSMO-DE-EPS)

Radar data (RADOLAN)

FIGURE 4.1: Procedure for the extraction of weather data.

The generation process is initially split into the preparation of COSMO-
DE(-EPS) data and the preparation of radar data to finally join these two
parts into one dataset. COSMO-DE(-EPS) data is saved as GRIB2-file. In the
first step the data is extracted from these files and converted to a numpy ar-
ray. Second, all datapoints in the grid not corresponding to the considered
parts of Germany (in our case the Harz area) are removed. The third step
is optional and is dependent on the aspired procedure in the training step.
If the training step requires input grids with the same spatial dimensions as
the output grid, at this point interpolation is used to double the size of each
spatial dimension. If the algorithm itself is doing the upscaling, the subset
is used directly without interpolation. The other part of this dataset is the
mentioned radar data called RADOLAN. RADOLAN is offering two main
products, summing up rainfall either hourly or daily. The daily summary is
saved as a binary file while the hourly data is saved in ASCII-format. Ac-
cording to this two extractors have been defined, converting the input files
into numpy arrays. Analog to the procedure for COSMO-DE(-EPS) data, next
the Harz area is extracted, to finally interpolate the grid for matching sizes
between input and output data.

In figure 4.2 the shapes of the numpy arrays after each generation step are
shown. COSMO-DE(-EPS) is offering 461× 421 spatial data points represent-
ing the area of Germany for each of the selected 9 features. In the following,
the spatial dimensions are reduced towards 41× 26, by selecting only data-
points inside the Harz region. Afterwards, the array is either prepared for
the joined dataset or it needs to be interpolated towards spatial dimensions
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of 82× 52. RADOLAN is starting with 900× 900 points and is reduced to
82× 52 in the already mentioned two steps.

9 x 461 x 421 9 x 41 x 26 9 x 82 x 52

900 x 900 117 x 76 82 x 52

Combine as base 
and target arrays

Model data (COSMO-DE-EPS)

Radar data (RADOLAN)

FIGURE 4.2: Shapes during the extraction of weather data.

In the following sections the available data and its extraction process are
described in more detail.

4.2.2 COSMO-DE(-EPS)

4.2.2.1 Fileformat - Grib(2)

Data generated by COMSO-DE(-EPS) is encoded in files using the GRIB(2)
(General Regularly-distributed Information in Binary form) format. GRIB2 is
a data format presented by the World Meteorological Organization 3 (WMO)
and used by many meteorological organizations like the DWD 4. GRIB2 is a
table based binary data format specialized on efficiency in saving, transmit-
ting and processing data.

GRIB2 consists of eight different sections. The first six are mainly offering
general and structural information to interpret the data correctly. They are
followed by the data itself and concluded by an end section.

4.2.2.2 Selection of variables

Prediction models run by COSMO-DE-EPS are simulating the dynamics of
many variables. To achieve the defined aim of predicting rain in a higher res-
olution than currently reasonably possible, a lot of these parameters may be
important. Under the premise of limited computational power a selection of
the available parameters is necessary. In the appendix under A.2.1 fields of-
fered by COSMO-DE-EPS are listed with the corresponding description (if it

3https://public.wmo.int/en
4https://www.dwd.de/DE/derdwd/it/_functions/Teasergroup/grib_.html
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is available) to show possible input parameter for the used machine learning
model.

For the initial dataset used in this thesis the available parameter had to be
reduced. The selection has been done during one of the DeepRain-Meetings
(7.3.2019 - 8.3.2019) in agreement with the DWD. The remaining parameter
are listed in table 4.1, based on descriptions offered by [Baldauf, Klink, and
Reinhardt, 2016]. On the left side one can see the shortnames used by the
DWD with the corresponding explanations on the right side.

TABLE 4.1: Selection of parameter simulated by COSMO-DE-
EPS.

Shortcut Description

CAPE_ML Convective Available Potential Energy, mean layer
eva Evaporation
TQC Total Column-Integrated Cloud Water
TDIV_HUM Vertical integral of divergence of total water content (s)
TQI Total Column-Integrated Cloud Ice
TWATER Total Column integrated water (all components)
TQG Total column integrated grauple
u Zonal wind in 850 hPa
w Vertical wind in 500 hPa
v Meridional wind in 850 hPa

4.2.2.3 Data extraction

Even though it is possible to decode GRIB files based on the given definitions
manually, it is useful to automate this procedure by using existing software
packages like ecCodes 5. Using this software, the grid based values for each
relevant variable in the file can be extracted easily. The selection of relevant
parameters is done using the defined shortnames presented in the section
before. After the extraction process a numpy array with a shape of 9× 461×
421 is handed over to the next preprocessing step, where 9 is defining the
number of features and 461× 421 is defining the spatial dimensions.

5https://github.com/ecmwf/eccodes
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4.2.2.4 Required Preprocessing for Hyper-resolution

The extracted data is describing whole Germany. To reduce the relevant
amount of data and focus on regions with challenging orography, the data
is reduced to the Harz region. To remove irrelevant data points, two other
grids defining the coordinates of all points are matched onto the data grid.
Having this information it is possible to remove all data point outside this
region, but this process is not trivial. In the DeepRain project only corners of
the relevant region have been defined using coordinates. Due to the struc-
ture of coordinate based grids (as presented in chapter 2) points with the
same longitude are not necessarily in the same column. To get a subset with
clear edges all rows and columns that do not contain any points with rele-
vant coordinates are removed. This results in in 41× 26 grid points for each
feature.

Dependent on the used architectures in the training step, the grid is either
ready for the combination step or it needs to get upscaled to the same size
as the target images. The upscaling is done using bicubic interpolation, gen-
erating a grid with 9× 82× 52 datapoints. To get a grasp on these grids, in
figure 4.3 the grid is shown using one subplot for each of its features.

Due to the significant differences of the value range in between their fea-
tures, another dataset for each size (with or without interpolation) is gener-
ated with feature-wise normalized data. For the normalization, maximum
and minimum of all samples have been computed for each feature individu-
ally. Using these feature specific maxima and minima, all values have been
updated using equation 4.1.

normalizedValue[ f , m, n] =
value[ f , m, n]−minimum[ f ]
maximum[ f ]−minimum[ f ]

(4.1)

In 4.1 m and n are describing the spatial dimensions while f defines the
currently normalized feature.

4.2.3 Radar data

4.2.3.1 Fileformats - binary vs. ASCII

The dataset used as target is representing measurements of radar stations in
a grid oriented format and is called RADOLAN. It is divided into two parts.
The first one is offering information on an hourly basis and the second one is
summing up these values to get daily aggregates. For both of them extractors
have been defined. In comparison to the hourly data, the extraction of daily
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FIGURE 4.3: Overview of the generated input data broken
down to its features.

radar data needs to be done by hand, due to its binary format. The binary
files consist of a header and a body for the radar data itself. In the header,
metadata and information about the format of the radar data are saved. In the
body 1.620.000 bytes are saved sequentially. To get reasonable results, these
Bytes need to get interpreted in pairs, resulting in 810.000 values. The com-
bination of these pairs is dependent on the currently used operating system,
because not every operation system is using the little-endian convention. If
the pairs are combined correctly, the extracted values can be reshaped into a
900× 900 numpy array as one can see in the appendix at A.7.

Hourly data is saved in ASCII format. This data can be easily extracted
using gdal6 and can be returned instantly without further configurations. In
both formats the rain is measured in mm. To get cm based values it needs to
be divided by ten.

6https://gdal.org/
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4.2.3.2 Required Preprocessing for Hyper-resolution

Based on the successful extraction, the removal of non Harz parts of Ger-
many works analog to the procedure for COSMO-DE(-EPS), as presented in
the section before. The interpolation of the RADOLAN grid is necessary be-
cause the distance between points in the current grid is 1 km. Due to the dis-
tance of 2.8 km between points in COSMO-DE(-EPS) a simple upsamplpling
with the factor two is not possible. To create a matching ratio, the resolution
of the RADOLAN grid is reduced down to a distance of 1.4 km. Similar to
the last section, this is done using bicubic interpolation. The resulting grid
can be visualized like it is done in figure 4.4 for three different time points.

Target high norm Target mid norm Target low norm

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

FIGURE 4.4: Overview of the generated target data for three
different timepoints.

The three timepoints have been selected by computing the sum over all
features of the input data and choosing the ones with the lowest and highest
values as well as the one with the most average value. Figure 4.4 is using
normalized input data as reference for this computation.

4.2.4 Joined dataset based on COSMO-DE and radar data

To train the neural networks presented in chapter 5, a dataset has to be cre-
ated. In this dataset it needs to be possible to combine the available parts of
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COSMO-DE(-EPS) data with the matching target data, such that for exam-
ple the prediction of 3 o’clock in the morning with a leadtime of six hours is
matched to the radar data of 9 o’clock in the morning of the same day. But
on the other hand it is important to keep relevant information like structural
information of the data, the lead time, run time or the observation time of
every point in time. Due to this and to keep transparency, it is not expedient
to simply save the matching pairs without additional information. But on
the other hand one wants to be able to create this pairs easily. To achieve this,
the following data structure has been created using the fifth version of the
Hierarchical Data Format, short HDF5 [Folk et al., 2011].

HDF5 is a data file format used to save data in a flexible, efficient way that
is not dependent on a specific language but at least partially transformable
to language specific types like numpy. HDF5-files contain groups (white and
gray in figure 4.5) and datasets (red in figure 4.5) to structure the data. While
groups can be accessed in a dictionary like manner, datasets are similar to
numpy arrays, making the use quite intuitive.

joined dataset

structural information

base data
target data

values

base data

lead time

model run

feature data
target data

observation time
precipitation data

FIGURE 4.5: Structure of the joined dataset.

The HDF5-file saves the required structural information of the two data
sources and the values itself. Structural information are mainly arrays with
coordinates enabling the reconstruction of spatial position for every part of
the grid, saved for target and base data. The values are split into base and
target data as well, but they are sorted differently. The feature arrays of the
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base data are sorted by lead time and model run time. Precipitation data on
the other hand is only sorted by their observation time.

This kind of structure can be used to create matching pairs by iterating
over the base data and adding up the lead time and the model run time re-
ceiving a corresponding observation time of the target data.

4.3 Algorithms

As already mentioned, there are different techniques usable for super-resolution.
But due to the focus of DeepRain, only neural network based techniques are
of interest. The networks are implemented in TensorFlow using a genera-
tor extracting matching pairs out of the created dataset(s) as described in the
last chapter. In this matching procedure for each COSMO-DE(-EPS) model
run the RADOLAN grid with the correct time point needs to be extracted
by adding up the time point of the model run and the relevant leadtime(s).
Based on this generator, models can be defined in lean classes, inheriting
from a base class implementing the generator and the remaining parts of the
training process. The specific models used for the experiments are described
in chapter 5.
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Chapter 5

Experiments

5.1 General setup

As evaluated in section 2.2.3 the task this thesis wants to accomplish has
not been solved so far. But a lot of progress happened in super-resolution
of natural images. Due to this, many papers present usable techniques for
super-resolution as listed in chapter 2. Led by the focus on neural network
(as defined by the DeepRain project), the relevant techniques are reduced,
but still a wide variation of methods is given. To take care of these possibil-
ities a systematic way of testing is required. In this chapter the procedure is
presented including the conducted experiments and their results, based on
the general assumption, that the task is learnable given the available data.

Initially, if one wants to compare different algorithms like neural net-
works it is necessary to define metrics. As presented in chapter 2, it is not
intuitively possible to create meaningful metrics for the quality of images,
especially for natural images, because the perceived quality of images dif-
fers from per point measurements. In contrast to that, radar data does not
need to look pleasurable to humans, rather it should be point wise as sim-
ilar as possible to the target image. This is relevant, because every point in
the grid is averagely 1.4 km away from the next point and even small pixel
wise shifts are highly important for some industries described in chapter 3.
Due to this, classical metrics like mean squared error, mean absolute error
and peak signal to noise ratio have been selected and accordingly are saved
for each experiment. Additionally, for every experiment three data points
are selected, to offer a visual intuition of the prediction quality. To achieve a
high variability, the input arrays are saved that are resulting in the highest,
the lowest and the average value if all values are summed up. For this data
points, input arrays and predictions of the network are saved as well as the
target arrays.
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For machine learning algorithms example data is of significant impor-
tance just by definition [Russell and Norvig, 2016]. For the conducted exper-
iments, the available data is highly limited. In general, it is possible to use
model and radar data since the first models have been developed. But due
to the significant differences between the forecast models it may be promis-
ing to focus on a single model, especially because of the different outputs of
the models (for example different parameters and varying distances between
points). In consultation with all project partners of the DeepRain project the
scope of the considered data has been limited again, because the differences
between the seasons, between the different leadtimes and between the differ-
ent runs each day are too high to get reasonable results (more details about
leadtimes and executed runs in chapter 2.1.3.2 and 2.1.3.3). Additionally, the
different ensemble member may be too similar to add information if all of
them are used. In the current state of the project only data from three months
has been provided. According to this, data from COSMO-DE-EPS is avail-
able for September, October and November 2017, consisting of 20 ensemble
members with 40 different leadtimes and eight runs each day. After the re-
duction of this already limited dataset based to the recommendations of the
DeepRain consortium, only 91 data points remain (30 + 31 + 30). To get at
least a somehow reasonable number of datapoints, all runtimes of these days
are considered, resulting in 728 data point in total ((30 + 31 + 30) · 8).

Next the variable parameters need to be defined. Based on the literature
of super-resolution for natural images 12 aspects have been identified, that
should be checked experimentally. These parameters are dataset, model, num-
ber of features, size of the image in x direction, size of the image in y direction, num-
ber of output channel, activation function and leadtime as structural parameter,
describing the data and the properties of the used model. Additionally num-
ber of epochs, batch size, loss function and learning rate are defining the training
process of the network in more detail.

Most of these are atomic decisions but some are further reaching, as for
example the used dataset and the model. Two main datasets are available
based on DWD data. The only difference between these datasets is the size
of the input images. Either the input images are already interpolated towards
the size of the target images or the input images are kept in their initial size.
The probably most important aspect is the chosen model. The model defines
the actual network. The varied aspects are the depth of the network, the
point of feature combination and where the actual upscaling happens during
the process.
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By varying these parameters several experiments can be defined. The
conducted experiments are presented in the following section.

5.2 Implemented experiments

To evaluate the effect of the changeable parameters the network results given
their possible values need to be compared, while the other aspects are kept
largely constant. But not all parameters need to be changed. Some of the
parameters are only included to allow the expandability of the system or are
kept constant initially, because an increase is still possible afterwards. This
kind of parameter are number of feature, size of the image in x direction,
size of the image in y direction, number of epochs, batch size and number
of output channels. In contrast to that, dataset, model, loss function, activa-
tion function and learning rate are varied. According to the paper presented
in chapter 2, the highest effect may be expected by the choice of a specific
model and the corresponding dataset. Loss function, activation function and
learning rate may be important as well but probably they will not have as
much influence as using a different model. In general one can consider ev-
ery possible combination of these parameters, but to see the effect of one
parameter change, a balance between the isolation of parameters and the re-
sulting combinatorial effects needs to be kept. Due to that, for the evaluation
of models and their corresponding dataset, loss function, activation function
and learning rate are kept constant. Similar to this the evaluation of loss
function, activation function and learning rate is done using one model with
its corresponding dataset. This results in the experiments listed in table 5.1,
including all parameters that are changed in the different experiments.

Additionally, all experiments are repeated with feature wise normalized
input data. With these configurations, the influence of four main aspects have
been tested. Initially the moment where the nine input features are combined
to finally get one output value for each grid point is evaluated. Second the
moment when the size of the input image gets increased during the process
is checked. Third the depth of the network is varied and finally the influence
of loss function, activation function and learning rate are examined.

For the evaluation of feature combination, the dataset with same sized in-
put and target images (presented in chapter 4) is used. In this context, same
sized data means, that the first two dimensions are same, the third dimen-
sions differs even in the same sized dataset because it represents the features
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TABLE 5.1: List of parameters for implemented experiments.

Dataset Model
Loss

function
Activation
function

Learning
rate

same size combine features last mse relu 1e-3
same size combine features first mse relu 1e-3

same size combine features
first extended mse relu 1e-3

same size cnn simple mae relu 1e-2
same size cnn simple mae relu 1e-3
same size cnn simple mae relu 1e-4
same size cnn simple mae tanh 1e-2
same size cnn simple mae tanh 1e-3
same size cnn simple mae tanh 1e-4
same size cnn simple mse relu 1e-2
same size cnn simple mse relu 1e-3
same size cnn simple mse relu 1e-4
same size cnn simple mse tanh 1e-2
same size cnn simple mse tanh 1e-3
same size cnn simple mse tanh 1e-4

different size deeper cnn mse relu 1e-3

different size deeper cnn with
small kernel mse relu 1e-3

different size cnn upsampling
beginning mse relu 1e-3

different size cnn upsampling mid mse relu 1e-3
different size cnn upsampling end mse relu 1e-3

extracted from COSMO-EPS-DE and no spatial dimension. Loss function, ac-
tivation function and learning rate are kept constant to MSE, relu and 1e− 3.
What differs is the model. In the first case the feature combination using a
1x1 convolutional layer is applied in the beginning, followed by just one 3x3
Kernel afterwards, as one can see below.

1 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 1 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

LISTING 5.1: Model structure with combination of features in

the beginning.

To figure out the influence of feature combination in the beginning or in
the end two more models have been defined. The first one simply switches
the order of the convolutional layers.
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1 x = Convolution2D ( 9 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

LISTING 5.2: Model structure with combination of features at

the end.

The second one adds two additional layers to figure out the dependence
of the network depth for the feature combination.

1 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 1 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

3 x = Convolution2D ( 5 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )

4 x = Convolution2D ( 1 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )

LISTING 5.3: Model structure with combination of features in

the beginning with additional layers.

Next to the moment of feature combination, the moment when the input
image is upscaled in some way may be relevant as presented in chapter 2.
To evaluate this point of upscaling, another dataset has been introduced. In
this dataset the input data is not interpolated to the size of the output image.
It is kept in its initial sizes half as big in x and y direction compared to the
output grid. Using this dataset the process of upsampling can be included
into the model. Again, this has been done with three different models. The
first model upsamples in the beginning as shown below.

1 x = UpSampling2D ( ( 2 , 2 ) ) ( inputs )
2 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( x )
3 x = Convolution2D ( 6 4 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )
4 x = Convolution2D ( 3 2 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )
5 x = Convolution2D ( 1 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )

LISTING 5.4: Model structure with upscaling towards the

doubled size in the beginning.

As first comparison, the upsampling process can be done as last step as
well, as one can see below.
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1 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 6 4 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

3 x = Convolution2D ( 3 2 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )

4 x = Convolution2D ( 1 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )

5 x = UpSampling2D ( ( 2 , 2 ) ) ( x )

LISTING 5.5: Model structure with upscaling towards the

doubled size at the end.

In contrast to the feature combination, in this case also an upsampling in
the in the middle of the network is considered, mainly due to the success of
[Osendorfer, Soyer, and Smagt, 2014].

1 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 6 4 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

3 x = UpSampling2D ( ( 2 , 2 ) ) ( x )
4 x = Convolution2D ( 3 2 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )
5 x = Convolution2D ( 1 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )

LISTING 5.6: Model structure with upscaling towards the

doubled size between the convolutional layers.

One main trend in the deep learning community has been towards much
deeper networks, also for super-resolution, as shown in chapter 2. To under-
stand the influence of the network depth in the special case of super resolu-
tion with limited data, two networks with higher depth have been evaluated.
Starting with the following one.

1 x = UpSampling2D ( ( 2 , 2 ) ) ( inputs )
2 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( x )
3 x = Convolution2D ( 3 2 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )
4 x = Convolution2D ( 6 4 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )
5 x = Convolution2D ( 3 2 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )
6 x = Convolution2D ( 1 6 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 4 ’ ) ( x )
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7 x = Convolution2D ( 1 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 5 ’ ) ( x )

LISTING 5.7: Model structure of a deeper neural network.

Due to the limited size of the input data, additionally a version with
smaller kernel sizes has been implemented. Using this, it is possible to re-
duce the number of parameters dramatically but at the same time keep a
deeper neural network.

1 x = UpSampling2D ( ( 2 , 2 ) ) ( inputs )
2 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( x )
3 x = Convolution2D ( 3 2 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )
4 x = Convolution2D ( 6 4 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )
5 x = Convolution2D ( 3 2 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )
6 x = Convolution2D ( 1 6 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 4 ’ ) ( x )
7 x = Convolution2D ( 1 , ( 3 , 3 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,

padding= ’ same ’ , name= ’ l e v e l 5 ’ ) ( x )

LISTING 5.8: Model structure of a deeper neural network with

small kernel sizes.

As presented in chapter 2 next to the architecture of the network, other
parameters like the loss function may be relevant. To figure out the impor-
tance of the loss function and its interaction with the used activation function
and the learning rate, one fixed model has been chosen. The model is based
on [Dong et al., 2016], simply extended by an initial layer to combine the fea-
tures of the DWD model output. After this combination, the grid is mapped
into a high dimensional feature space, one non-linear operation is applied
and the space gets mapped back towards the dimension of the target image.
The model is shown below.

1 x = Convolution2D ( 1 , ( 1 , 1 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 0 ’ ) ( inputs )

2 x = Convolution2D ( 6 4 , ( 9 , 9 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 1 ’ ) ( x )

3 x = Convolution2D ( 3 2 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 2 ’ ) ( x )

4 x = Convolution2D ( 1 , ( 5 , 5 ) , a c t i v a t i o n = s e l f . a c t i v a t i o n _ f u n c t i o n ,
padding= ’ same ’ , name= ’ l e v e l 3 ’ ) ( x )

LISTING 5.9: Model structure of a simple neural network based

on the model presented by [Dong et al., 2016
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As listed in 5.1, the parameters varied for this experiment are loss func-
tion, activation function and learning rate. Possible values for the loss func-
tion are mean squared error (mse) and mean absolute error (mae). Peak sig-
nal to noise ratio (psnr) is ignored in this case because it is computed based
on mse and has the drawback of producing possibly infinite values. As acti-
vation functions relu and tanh are considered and the learning rate is varied
from 1e-2 towards 1e-4.

For all these experiments a number of parameters are kept constant. An
overview of these parameters is presented in 5.2:

TABLE 5.2: Static parameters of all experiments.

Parameter Value

Number of features 9
Size of the image in x direction 82
Size of the image in y direction 52
Number of epochs 50
Batch size 16
Number of output channel 1
Leadtime 11, 12, 13

The number of features describes the number of input variables that are
considered for each spatial data point, while the number of output chan-
nels is describing the same dimensionality for the output image. The sizes
in x and y direction are describing the spatial dimensions of the target im-
age. Number of epochs and batch size are hyper parameters for the training
process, defining how long the model is trained and how many grids are
grouped for each batch. Finally, the leadtime describes the number of hours
the model should predict into the future or more exactly which predictions
of the model should be chosen.

5.3 Results

Conducting these experiments created many quite unambiguous results. In
general, it seems like the assumption that the task is learnable given the avail-
able data does not hold. To train neural networks the correct choice of a loss
function and especially the minimization of this loss is fundamental [Li et
al., 2017]. Even though the correct choice of loss functions is not intuitive for
natural image super-resolution tasks, as presented in chapter 2, the problem
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is in the most cases not the ability of the network to learn a mapping. The
problem is rather that this mapping does not match the human perception.
In the case of grid based weather data the second aspect is not as important
but unfortunately even the minimization of loss in general is not possible, as
one can see in figures 5.1 and 5.2.

0 10 20 30 40 50
step

0.0

0.2

0.4

0.6

0.8

mse
mae

FIGURE 5.1: Mean squared error and mean absolute error pre-
sented exemplary for one training process.
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20

40

60

80

100
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FIGURE 5.2: Peak signal to noise ratio presented exemplary for
one training process.

The figures are representing the metrics saved for the training processes,
that are quite similar for all experiments presented in the chapter before.
In figure 5.1 mean squared error (mse) and mean absolute error (mae) are
shown for 50 epochs. Figure 5.2 in comparison is representing the peak sig-
nal to noise ratio (psnr), a widely used metric for super-resolution processes.
In comparison to mse and mae, psnr is only used for comparison reasons and
not as loss function.
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Target high norm Target mid norm Target low norm

FIGURE 5.3: Example of target data with high, mid and low
norm.

To understand the problems of this algorithm, the structure of the target
data offers some insights. In figure 5.3 a selection of target images is pre-
sented, selected by the height of the summed up values in the corresponding
base image. On the right side the image with the lowest sum is shown. Not
that surprisingly, the image shows close to zero rain. In the middle and on
the left size, the amount of rain should be higher, but as one can see the image
with an average norm has close to zero rain measured for the Harz area. This
differs in the left image with the highest norm, but still the amount of rain is
quite sparse (Brighter values are representing a higher amount of rainfall in
cm).

Sparse data like this is not easily learnable, because it is possible to get
good values for the loss function by simply predicting no rain by default.
This behavior can be seen by most of the networks. Two examples are shown
below, figure 5.4 for the initial dataset and figure 5.5 with the same experi-
mental setup except that the input data has been normalized.

The target images of figure 5.4 and figure 5.5 differ, because the sum is
computed based on the sum of the input data and after the feature wise nor-
malization some features are no longer as dominant as before (Example of
the value differences can be seen in chapter 4).

Nearly none of the other experiments offers more insight, if some artifacts
are ignored. Plots like the ones in figure 5.4 or 5.5 are listed in the appendix
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE 5.4: Predictions and target data for the deeper neural
network with smaller kernel.

for all conducted experiments. One group of experiments however is differ-
ing from the the shown examples quite obviously, as one can see in figure
5.6.

This behavior can be seen in eight of forty experiments. All of them are
done with the dataset composed of same sized grids and the simple convo-
lutional network. But more important, they are all using tanh as activation
function, independent of the loss function and for different learning rates.
Unfortunately it is not possible to explain the behavior only based on the ac-
tivation function because there are experiments left that are using tanh with-
out this behavior as one can see in figure 5.7.

But if one combines activation function and learning rate the behavior
may be explainable. The greenish artifact dominated images are only pre-
dicted by tanh networks with small learning rates (below 1e-2). According to
that, the behavior may be based a slower training process of networks with
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE 5.5: Predictions and target data for the deeper neural
network with smaller kernel on normalized data.

tanh as activation function and smaller learning rates.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE 5.6: Predictions and target data for the simple cnn with
tanh as activation function, mse as loss function and a learning

rate of 1e-3.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE 5.7: Predictions and target data for the simple cnn with
tanh as activation function, mse as loss funtion and a learning

rate of 1e-2.
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Conclusion

The approach presented in this thesis is based on the reliability of radar data.
But as presented by [Toth, Brath, and Montanari, 2000], radar detection is
especially complicated in mountain regions. In combination with the lim-
itations presented by the DWD itself (listed in chapter 2), the reliability of
radar data as ground truth can be put in doubt. But even apart from that,
the combination of just 728 data points with really sparse data makes it quite
hard to predict precipitation events, as shown in chapter 5. Additionally,
the task that should be solved is even a lot more complex than upscaling of
natural images, because next to the super-resolution itself the features of the
model need to be combined in a meaningful way to generate cm values for
the amount of fallen rain. This combination makes it very hard to learn the
task. Due to this it plausible that the best solution for the networks is to just
predict zeros. For other results, more information need to be added. Apart
from just increasing the amount of data, it may be helpful to add orography
or feed forward layers to learn characteristics of each point out of a spatial
perspective. If orography information is added even augmentation like ro-
tations may be meaningful, because the network is not longer dependent on
the specific position of each grid point. In addition to using more months as
input data, next to 12 hours the leadtimes 11 and 13 can be considered, be-
cause the prediction-differences of COSMO-DE-EPS due to varied leadtimes
may be small enough to not confuse the network. Next to this, currently
only the nine most important features are used, so that an increased number
of features may be an opportunity as well. If enough space on the ikw-grid
is available or the Jülich system can be used, an integration of all ensemble
members may worth a shot. Next to the datasource, the network structures
can be improved using most of the concepts developed for image classifica-
tion in the past years. One of the most interesting aspects may be recursion,
because it increases the kernel size indirectly without adding more parame-
ters and skip connections. Independent of currently well-known techniques,
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it may be promising to use convolutions with a stride of 1/2 instead of sim-
ple upsampling. If neural networks are not longer a requirement, random
forest as presented by [Im et al., 2016] may be worthwhile. As already pre-
sented in chapter 2.2.3, it may be an interesting idea to overcome the prob-
lems of grid based radar data by learning directly on the point measurements
of rain gauge data. To allow this kind of mapping from grid based data to-
wards point measures gaussian processes or attentive neural processes are a
promising idea [Berrocal, Gelfand, and Holland, 2010, Kim et al., 2019]. But
for the next step one should think about starting with a simpler task like tem-
perature prediction in plain areas, to make sure, that the used architectures
are working correctly. If this works out, a gradual difficulty increasement can
be done by first switching to rain forecasting in a plain area and finally try-
ing the complex task of rain forecasting in areas with many height differences
like the Harz.



53

Appendix A

Appendix

A.1 Theoretical Foundations

FIGURE A.1: Combination of rada data and obrometer data ex-
emplary, based on [DWD, 2018].
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FIGURE A.2: Combination of rada data and obrometer data for
whole Germany, based on [DWD, 2018].

FIGURE A.3: Precipitation dynamics modeled by COSMO-DE,
based on [Baldauf, Klink, and Reinhardt, 2016].



A.1. Theoretical Foundations 55

FIGURE A.4: Varied starting conditions used for generation of
COSMO-DE-EPS ensemble model, based on [Theis et al., 2017].

FIGURE A.5: Distribution and height of vertical ICON layer,
based on [Reinert et al., 2019].
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FIGURE A.6: Refinement of the ICON grid in Europe using bi-
section, based on [Reinert et al., 2019].

FIGURE A.7: Grid of daily RADOLAN data, based on [DWD,
2018].
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A.2 Implementation and experiments

A.2.1 COSMO-DE-EPS available parameter

TABLE A.1: Parameter simulated by COSMO-DE-EPS.

Shortcut Description

CAPE_ML Convective Available Potential Energy, mean layer
r No description available
HTOP_SC Cloud top above msl, shallow convection
CLCH Cloud Cover (0 - 400 hPa)
t Temperature
eva Evaporation
ALHFL_S Latent Heat Net Flux (m)
prmsl No description available
lssrwe No description available
TQC Total Column-Integrated Cloud Water
PRR_GSP Large scale rain rate
TDIV_HUM Vertical integral of divergence of total water content (s)
CIN_ML Convective Inhibition, mean layer
2t No description available
TQI Total Column-Integrated Cloud Ice
tcols No description available
SDI_1 Supercell detection index 1 (rot. up+down drafts)
T_SNOW Snow temperature (top of snow)
TWATER Total Column integrated water (all components incl. precipitation)
CLCL Cloud Cover (800 hPa - Soil)
ATHB_S Net long wave radiation flux
z No description available
TQG Total column integrated grauple
TCH Turbulent transfer coefficient for heat (and Moisture)
W_SO_ICE Soil ice content (multilayers)
ASOB_T Net short wave radiation flux
AVMFL_S Momentum Flux, V-Component (m)
2r No description available
tp No description available
u Zonal wind in 850 hPa
AUMFL_S Momentum Flux, U-Component (m)
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Shortcut Description

HTOP_DC Height of top of dry convection above MSL
PRG_GSP Graupel (snow pellets) precipitation rate
w Vertical wind in 500 hPa
mn2t6 No description available
VMAX_10M Maximum Wind 10m
ceil Ceiling
ASWDIR_S Downward direct short wave radiation flux at surface
sde No description available
HBAS_SC Cloud base above msl, shallow convection
ASOB_S Net short wave radiation flux (at the surface)
rsn No description available
RAIN_GSP Large scale rain (Accumulation)
sd No description available
tcolr No description available
cnwat No description available
APAB_S Photosynthetically active radiation (m) (at the surface)
GRAU_GSP Graupel (snow pellets) precipitation (Accumulation)
cd No description available
tciwv No description available
WSO Column-integrated Soil Moisture (multilayers)
10v No description available
SDI_2 Supercell detection index 2 (only rot. up drafts)
SNOWGSP Large-Scale snowfall - water equivalent (Accumulation)
ATHB_T Net long wave radiation flux
al No description available
ASWDIFU_S Upward diffusive short wave radiation flux at surface
ASHFL_S Sensible Heat Net Flux (m)
mx2t6 No description available
FRESHSNW Fresh snow factor
v Meridional wind in 850 hPa
10u No description available
CLCM Cloud Cover (400 - 800 hPa)
ASWDIFD_S Downward diffusive short wave radiation flux at surface
sp Wind speed (SP)
c No description available
QV_S Specific Humidity (S)
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Shortcut Description

sr No description available
CLCT Total Cloud Cover
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A.2.2 Example predictions of conducted experiments

Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.8: Predictions and target data for neural network
combining features last.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.9: Predictions and target data for neural network
combining features first.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.10: Predictions and target data for neural network
combining features first extended version.



A.2. Implementation and experiments 63

Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.11: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-4.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.12: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-3.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.13: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-2.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.14: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-4.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.15: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-3.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.16: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-2.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.17: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-4.



70 Appendix A. Appendix

Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.18: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-3.



A.2. Implementation and experiments 71

Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.19: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-2.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.20: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-4.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.21: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-3.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.22: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-2.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.23: Predictions and target data for convolutional
neural network with upsampling in the middle.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.24: Predictions and target data for convolutional
neural network with upsampling at the end.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.25: Predictions and target data for convolutional
neural network with upsampling at the beginning.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.26: Predictions and target data for deeper convolu-
tional neural network.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.27: Predictions and target data for deeper convolu-
tional neural network with smaller kernel.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.28: Predictions and target data for neural network
combining features last normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.29: Predictions and target data for neural network
combining features first normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.30: Predictions and target data for neural network
combining features first extended version normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.31: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-4 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.32: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-3 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.33: Predictions and target data for simple neural net-
work using mse, tanh and a learning rate of 1e-2 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.34: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-4 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.35: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-3 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.36: Predictions and target data for simple neural net-
work using mse, relu and a learning rate of 1e-2 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.37: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-4 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.38: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-3 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.39: Predictions and target data for simple neural net-
work using mae, tanh and a learning rate of 1e-2 normalized.



92 Appendix A. Appendix

Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.40: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-4 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.41: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-3 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.42: Predictions and target data for simple neural net-
work using mae, relu and a learning rate of 1e-2 normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.43: Predictions and target data for convolutional
neural network with upsampling in the middle normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.44: Predictions and target data for convolutional
neural network with upsampling at the end normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.45: Predictions and target data for convolutional
neural network with upsampling at the beginning normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.46: Predictions and target data for deeper convolu-
tional neural network normalized.
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Prediction high norm Prediction mid norm Prediction low norm

Target high norm Target mid norm Target low norm

FIGURE A.47: Predictions and target data for deeper convolu-
tional neural network with smaller kernel normalized.
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